The Interpretation of Dreams: An Explanation

of the Electric Sheep Distributed Screen-Saver

by Scott Draves, Ph.D.
DreamWorks SKG, San Francisco, USA

Intro

The name Electric Sheep comes from Philip K. Dick's novel Do Androids Dream of Electric Sheep. It realizes the
collective dream of sleeping computers from all over the Internet. Electric Sheep is a distributed screen-saver
that harnesses idle computers into a render farm with the purpose of animating and evolving artificial life-forms.
The project is an attention vortex. It illustrates the process by which the longer and closer one studies some-
thing, the more detail and structure appears.

1. The Client

When the software is activated, the screen goes black and an animated 'sheep' appears. In parallel, the screen-
saver client contacts the server and joins the distributed computation of new sheep, an idea inspired by the
SETI@home project. [1]

The screen-saver is a window into a visual space shared among all users. Clients render JPEG frames and
upload them to the server. When all the frames are ready, the server compresses them into an MPEG anima-
tion. Each animation is the phenotype of an artificial organism, an 'electric sheep.' Clients download the MPEG
sheep and display them one after another in a continuous, ever-changing sequence.

About once every five minutes a new sheep is born and distributed to all active clients. Each sheep is an ani-
mated fractal flame. [2] Example still frames appear in Figure 1. The shape is specified by a string of 120 real
numbers -- a genetic code of sorts. Some of the codes are chosen at random by the server with heuristics to
avoid malformed sheep, somewhat like spontaneous abortion. The rest are derived from the current population
according to a genetic algorithm with mutation and cross-over.

Figure 1. Example still frames

Electric Sheep...realizes the collective dream of
sleeping computers from all over the Internet; a dis-
tributed screen-saver that harnesses idle comput-
ers into a render farm with the purpose of animat-
ing and evolving artificial life-forms

2. The Server

The server has a web interface for people in addition to the one used by clients. It
allows users to see and download the currently living sheep as well as monitor
the rendering of new ones.

Clients can identify themselves with a nickname and URL and see exactly which
frames are theirs. The server generates rankings of nicknames and IP addresses
by the number of frames contributed. Users can visit each other's web pages and
find out who else is in the community.

Normally, Electric Sheep is very reliable and runs for weeks without assistance,

but with new versions come new bugs, and at these times, the ability to tweak the
server live and online is essential to keeping the flock healthy. By entering a

| password, a user can become an administrator and delete bad frames, entire

sheep, or block clients by address. An administrator can also inject a particular

= genetic code into the system, for example, to resurrect a sheep from the code

= stored in a previously captured MPEG file.

Intelligent Agent 4.1 Winter 2004 Generativity.Draves.Electric Sheep.01



3. Life, Death, and Interpolation

A sheep's life is finite. | only have enough disk quota to keep about thirty alive on the server. Old sheep are deleted without a
trace. Users may vote for a sheep by pressing the up arrow key when that sheep is displayed on their screen. [3] Popular
sheep live longer, and are more likely to reproduce. Hence, the users' preferences provide the fitness function for an aesthet-
ic evolutionary algorithm, an idea first realized by Karl Sims. [4]

The fractal flame algorithm takes the genetic code and produces a still image, the first frame of the animation. The genetic
code contains blending coefficients and 2D affine transformations. The animation of each sheep is produced by rotating all its
transforms by 360 degrees. As a result, the shape has returned to its original state by the end of the rotation, and hence
each sheep is an animation that loops.

The parameter space of sheep is continuous, and the server generates smooth transitions between sheep by interpolating in
the genetic space. The original interpolation method resulted in C1 discontinuities (angles or jerks in the motion) at the begin-
ning and end of each transition because it was pair-wise linear, and the direction of rotation differed from the direction to the
next sheep. Cassidy Curtis suggested the method used to solve this problem: use pair-wise linear interpolation, but make the
end-points rotating sheep instead of fixed.

The set of animations on the client form a graph, as illustrated by the diagram. This kind of diagram is used on the web serv-
er to represent the state of the flock. Each arrow represents an animation. The nodes represent key-frames. A sheep anima-
tion is an arrow with the same keyframe at its head and its tail, because sheep are loops. The client plays the animations by
following the arrows head to tail and branching and to seek out new territory.

4. Measurements and Statistics

Clients typically store about 100 sheep totaling 9 minutes of animation and taking 250 megabytes of disk space. The server
uses a free MPEG2 video encoder at a resolution of 640 by 480 pixels and 5 megabits per second. Clients typically take
between 20 and 80 seconds to render each frame.

The high resolution sheep available from the web pages and in the video documentary were born on the sheep server, then
the parameters were tweaked to increase quality, and finally they were re-rendered and compressed off-line to avoid MPEG
compression artifacts.

In ten days, at the end of October 2001, clients from 650 unique IP addresses contributed frames to the server. Multiple
users may share an address, and no attempt is made to uniquely identify clients, so the real user count is unknown. At that
time about 150 clients were participating in the render farm at any given time. In the first 12 days of March 2003, clients from
4900 unique IP addresses downloaded animations from the two operational sheep servers (the second server supported
legacy clients). In November 2003, there were 135 clients simultaneously rendering frames, and 1700 workers within one
week. User growth is currently slow but steady. When the OSX and Windows versions leave beta, | expect a surge in clients
again.

The user base is limited to those with high-bandwidth, always-on connections to the Internet such as DSL, cable-modem, or
university or corporate networks. Because the client uses only the http protocol on port 80 and it supports web proxies (via
the underlying curl library), it can generally be used from behind firewalls and NAT boxes.

5. Development

From August 1999 (when the client was created) until October 2001, the Electric Sheep client only ran on Linux. At that time,
Matt Reda released a Mac OS X client, and the number of clients quickly doubled. Despite many requests, several promises,
and one near miss, no working Microsoft Windows version appeared until Nicholas Long delivered a beta version in May
2003.

Linux v2.4 included a substantial upgrade to the core Fractal Flame code, including symmetries, and new variational equa-
tions contributed by Ronald Hordijk, as well as the new interpolation technique. The Macintosh client was not updated and its
users remained cut off from the server until Mathew provided the crucial updates in October 2003.

In October 2002, the domain nhame was hijacked by a competing 'electric sheep' site. Fortunately, after a hacking and legal
scuffle, the domain has been returned and the site is back in operation, though the user base suffered a setback. Both
clients and the server are open source and there is a developer community as well as a user community. The whole system,
centered around the electricsheep.org web site, has its own buzz. The users and developers exchange messages through
the discussion forum and email, and clients and servers exchange images and animations. There is an evolving ecology of
agents, codes, and protocols.

6. The Vortex

Electric Sheep investigates the role of 'experiencers' in creating the experience. If nobody ran the client, there would be noth-
ing to see. Eons ago, tiny irregularities in our universe became centers of accretion and eventually grew into stars. A parallel
process unfolds in cyberspace.

Intelligent Agent 4.1 Winter 2004 Generativity.Draves.Electric Sheep.02



It starts with an idea.

The sheep system exhibits increasing returns on each
of its levels. As more clients join, more computational
muscle becomes available, and the resolution of the
graphics may be increased, either by making the
sheep longer, larger, or sharper. As more people par-
ticipate in the system, the appearance of the images
improves. Likewise, as developers focus more of their
attention on the source code, the client and server
themselves become more efficient, grow new features,
and are ported into new habitats. The project gains
momentum, and attracts more developers. And as
more users vote for their favorite sheep, the evolution-
ary algorithm more quickly distills randomness into eye
candy. Perhaps attention acts on information the same
way gravity acts on mass: attraction begets attraction
and a positive feedback loop is formed.

7. The Future

Electric Sheep is open-ended and very much a work in
progress. For example, the server is currently a bottle-
neck because it must compress and deliver large
MPEGs to so many clients. But if clients act as servers
and become a true peer-to-peer network, the compres-
sion and bandwidth load could be distributed as much
as the computational load already is. This project is
currently underway, and | have selected gnutella [5] as
the P2P protocol because it has mature open-source
implementations. A central server will still be used by
clients to find each other and to coordinate basic ani-
mation parameters such as resolution and quality. The
rendering, compression, evolution, and voting can all
be fully distributed.

The architecture is not specific to fractal flames, and
the protocol should support multiple alternate render-
ers. | am seeking collaborators to contribute their own
generative animation software.

| believe the free flow of code is an increasingly impor-
tant social and artistic force. The proliferation of pow-
erful computers with high-bandwidth network connec-
tions forms the substrate of an expanding universe.
The electric sheep and we their shepherds are colo-
nizing this new frontier.

Acknowledgements

I would like to thank Mike Kuniavsky, Nick Thompson,
Katherine Mills, and especially Maribeth Back for their
input on this paper. Thanks to Dean Gaudet for host-
ing the web sites and Carnegie Mellon University
School of Computer Science for providing the band-
width for the heavy lifting. I'd also like to send Kudos
out to everyone who sent me a patch, bug report, or
even just one vote.

Intelligent Agent 4.1 Winter 2004

References

[1] SETI@home searches for a signal from extra-ter-
restrials in radio-telescope data. It consists of a
screen-saver client that is downloaded and installed by
users all over the world, and a server that divides-up
the data among the clients and collects the results. It
puts idle computers to work. SETI@home is the origi-
nal distributed screen-saver, and its architecture is the
inspiration for Electric Sheep's. See
http://setiathome.ssl.berkeley.edu.

[2] Fractal flames are the output of a particular Iterated
Function System (IFS) fractal rendering algorithm cre-
ated by the author in 1992. Each image is a histogram
of a two-dimensional strange attractor. The flame algo-
rithm contains three innovations: (a) It uses a collec-
tion of special functions that are composed with the
usual affine matrices. (b) The intensity of each pixel is
proportional to the logarithm of the density of the
attractor rather than a linear relationship. (c) The color
is determined by appending a third coordinate to the
chaotic system and looking it up in a palette. Great
care is taken to correctly anti-alias the image, both
spatially and temporally (with motion blur). Flame is
designed to produce images without artifacts, and to
reveal as much of the information contained in the
attractor as is possible. For more information, see
http://flam3.com and the unpublished paper "The
Fractal Flame Algorithm," available there.

[3] Pressing the up or down arrow key transmits a vote
for or against the currently displayed sheep. The serv-
er's web interface also has voting controls. In Linux,
voting by key-press requires a special version of
xscreensaver (part of the gnome desktop interface) to
work, so it is not widely (if at all) deployed. Voting
works correctly in the Mac OSX and Windows ver-
sions. The next version of the Linux client will include
the modified version of xscreensaver.

[4] "Artificial Evolution for Computer Graphics," Karl
Sims, Computer Graphics (Siggraph proceedings),
July 1991, available from
http://www.genarts.com/karl/genetic-images.html.

[5] Gnutella was initially developed by Justin Frankel
of Nullsoft. AOL (the parent company) pulled the plug
in early 2000 and ordered Nullsoft to cease all devel-
opment. The source code of Gnutella was intended to
be eventually released under the GPL (thus the "GNU"
in its name), but those plans were crushed by AOL's
early intervention. Despite the crackdown, the protocol
was reverse-engineered and numerous clients
appeared. Today it is by far the most popular file-shar-
ing network.

Generativity.Draves.Electric Sheep.03



